Author | Dano |
Submission date | 2011-06-12 20:01:43.150180 |
Rating | 5191 |
Matches played | 5261 |
Win rate | 49.23 |
Use rpsrunner.py to play unranked matches on your computer.
import random, math
CHOICES = ["R","P","S"]
WEIGHTEDCHOICES = ["R","P","S",'P']
HOWFARBACK = 5
STARTLEN = 1
A = [-0.467, 1.595, 6.540]
B = [-0.535, -1.983, 1.138]
C = [-1.325, 3.158, 2.303]
EA = [2.16, 1.82, 1.79]
EB = [1.80, 1.42, 1.72]
EC = [1.97, 1.26, 1.51]
def run(input = []):
global nmehistory
global myhistory
global output
input = input
if not input:
nmehistory = []
myhistory = []
choice = dumbchoice(randmode=True)
myhistory.append(choice)
output = choice
else:
nmehistory.append(input)
choice = worker(nmehistory,myhistory)
myhistory.append(choice)
output = choice
def dumbchoice(randmode=False):
if randmode:
return random.choice(CHOICES)
else:
return random.choice(WEIGHTEDCHOICES)
def strongagainst(choice):
if choice == "R": return "P"
if choice == "P": return "S"
if choice == "S": return "R"
def weakagainst(choice):
if choice == "R": return "S"
if choice == "P": return "R"
if choice == "S": return "P"
def analyze(p1,p2):
global A
global B
global C
if len(p1) < STARTLEN:
#start random?
return dumbchoice()
p1last = {'R':0,'P':0,'S':0} #p1 last choice
p1cnt = {'R':0,'P':0,'S':0} #count of p1 choices
p1trnd = {'R':0,'P':0,'S':0} #extra points for recent choices
#load the last
p1last[p1[-1]] = 1
#p1 choices in percents (0->1)
p1cnttotal = float(len(p1))
p1cnt['R'] = p1.count("R") / p1cnttotal
p1cnt['P'] = p1.count("P") / p1cnttotal
p1cnt['S'] = p1.count("S") / p1cnttotal
#recent p1 choices
p1trnd['R'] = p1[-HOWFARBACK:].count("R")
p1trnd['P'] = p1[-HOWFARBACK:].count("P")
p1trnd['S'] = p1[-HOWFARBACK:].count("S")
p2last = {'R':0,'P':0,'S':0} #p2 last choice
p2cnt = {'R':0,'P':0,'S':0} #count of p2 choices
p2trnd = {'R':0,'P':0,'S':0} #extra points for recent choices
#load the last
p2last[p2[-1]] = 1
#p2 choices in percents (0->1)
p2cnttotal = float(len(p2))
p2cnt['R'] = p2.count("R") / p2cnttotal
p2cnt['P'] = p2.count("P") / p2cnttotal
p2cnt['S'] = p2.count("S") / p2cnttotal
#recent p2 choices
p2trnd['R'] = p2[-HOWFARBACK:].count("R")
p2trnd['P'] = p2[-HOWFARBACK:].count("P")
p2trnd['S'] = p2[-HOWFARBACK:].count("S")
choice = dumbchoice()
choiceval = 1
for c in CHOICES:
cs = strongagainst(c)
cw = weakagainst(c)
#run an algorithm for r,p, and s
peram1 = A[0] * p1cnt[c] ** EA[0] + A[1] * p2cnt[cw] **EA[1] + A[2] * p2cnt[cs] ** EA[2]
peram2 = B[0] * p1trnd[c] ** EB[0] + B[1] * p2trnd[cw] **EB[1] + B[2] * p2trnd[cs] ** EB[2]
peram3 = C[0] * p1last[c] ** EC[0] + C[1] * p2last[cw] **EC[1] + C[2] * p2last[cs] ** EC[2]
#print int(peram1),int(peram2),int(peram3),"|",
tryval = peram1 + peram2 + peram3
if tryval > choiceval:
choiceval = tryval
choice = c
return choice
def lookback(p1,distance):
if len(p1) > 2*distance:
p1pat = "".join(p1[-distance:])
p1hist = "".join(p1[:-distance])
p1analysis = p1hist.split(p1pat)[1:]
if p1analysis:
counts = {'S':0,'P':0,'R':0}
num = 0.0
for s in p1analysis:
if s:
counts[s[0]] += 1
num += 1
probable = sorted(counts, key=counts.get,reverse=True)[0]
return (probable, counts[probable]/num)
return (None, 0)
def worker(nme,me):
nmechoice = strongagainst(analyze(nme,me))
mychoice = analyze(me,nme)
#pattern matcher
h, hc = lookback(nme,2)
h2, h2c = lookback(nme,1)
if hc > .5:
choice = strongagainst(h)
elif h2c > 0.5:
choice = strongagainst(h2)
elif mychoice == nmechoice:
choice = strongagainst(mychoice)
else:
choice = nmechoice
#print nmechoice, mychoice
return choice
run()