Author | Sijin Joseph |
Submission date | 2011-06-14 21:16:06.821408 |
Rating | 2615 |
Matches played | 5395 |
Win rate | 28.95 |
Use rpsrunner.py to play unranked matches on your computer.
from collections import defaultdict
import random
from pprint import pprint
def beat(move):
if move == 'R':
return 'P'
elif move == 'S':
return 'R'
elif move == 'P':
return 'S'
def random_move():
return random.choice(['R', 'P', 'S'])
class PredictN:
lookback = 1
history = ""
frequency = {}
def __init__(self, lookback = 1):
self.lookback = lookback
def __str__(self):
return "Predict{0}".format(self.lookback)
def add_history(self, move):
self.history += move
if len(self.history) > self.lookback:
key = self.history[(self.lookback + 1) * -1:-1]
if key not in self.frequency:
self.frequency[key] = defaultdict(int)
self.frequency[key][move] += 1
def predict(self):
if self.lookback == 0:
return (random_move(), 0.5)
key = self.history[(self.lookback) * -1:]
if key not in self.frequency:
return (random_move(), 0.5)
else:
distribution = self.frequency[key]
all_sum = sum(distribution.values())
max_count = max(distribution.values())
max_key = list(filter(lambda k: distribution[k] == max_count, distribution.keys()))[0]
return (max_key, max_count / all_sum)
def print_frequency(self):
pprint(self.frequency)
try:
predictors
except NameError:
predictors = [PredictN(0), PredictN(1), PredictN(2), PredictN(3), PredictN(4), PredictN(5), PredictN(6)]
tallies = {}
for p in predictors:
tallies[p] = 0
for p in predictors:
if len(input) > 0:
p.add_history(input)
predictions = [p.predict()[0] for p in predictors]
for k in range(len(predictions)):
if predictions[k] == input:
tallies[predictors[k]] += 1
max_tally = max(tallies.values())
predictor_with_max_tally = list(filter(lambda k: tallies[k] == max_tally, tallies.keys()))[0]
output = predictions[predictors.index(predictor_with_max_tally)]