Author | momo |
Submission date | 2011-06-12 08:42:21.315485 |
Rating | 6360 |
Matches played | 5414 |
Win rate | 64.07 |
Use rpsrunner.py to play unranked matches on your computer.
import random
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def notlowest(v):
return random.choice([i for i in range(len(v)) if (min(v) != v[i]) or (max(v) == v[i])])
#input=""
if(1):
if (input == ""):
N = 1
mem = 4
AR1 = 0.83
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
table = {}
fade = .01
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
total=0
r=0
M = 2
#models = [1]*(M*3+1)
models = [1]*6 + [1]
state = [0] * (M*3+1)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
prognosis = [random.choice(st) for i in range(M*3+1)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
state = [ AR1 * state[i] + res[prognosis[i]][tu] * models[i] for i in range(M*3+1)]
r = res[yo][tu]
total = total + r
count = [[0]* 3]* 2
if (N > mem + 1):
key0 = hi[N-mem-1:N-1]
s = hi[N-mem-2]
for key in [key0, [(i[0],-1) for i in key0], [ (-1,i[1]) for i in key0]]:
k = tuple([s] + key) # sic!
if (k in table): table[k] += 1+N*fade
else: table[k]= 1+N*fade
for y in st:
for t in st:
k = tuple([(y,t)] + key0)
if (k in table):
z = table[k]
count[0][y] += z
count[1][t] += z
for key in [[(i[0],-1) for i in key0], [(-1,i[1]) for i in key0]]:
k = tuple([(y,t)] + key)
if (k in table):
z = table[k]
count[0][y] += z*0.3
count[1][t] += z*0.3
prognosis[0] = highest(count[0]) #highest freq me
prognosis[3] = highest(count[1]) #highest freq you
if(random.choice([0,1])):
prognosis[0] = notlowest(count[0]) #highest freq me
if(random.choice([0,1])):
prognosis[3] = notlowest(count[1]) #highest freq you
#prognosis[0] = highest([-c for c in count[0]]) #not lowest freq me
#prognosis[3] = highest([-c for c in count[1]]) #not lowest freq you
# modelrandom
prognosis[3*M] = random.choice(st)
for i in range(M):
prognosis[i*3 + 1] = (prognosis[i*3] + 1) % 3
prognosis[i*3 + 2] = (prognosis[i*3+1] + 1) % 3
best = highest(state) #no random fallback
choices += [best]
yo = prognosis[best]
output = states[yo]
N = N + 1
#print(total)