Author | evolvingstuff |
Submission date | 2011-06-11 00:39:37.894626 |
Rating | 7185 |
Matches played | 3358 |
Win rate | 69.92 |
Use rpsrunner.py to play unranked matches on your computer.
import random, math
if input == "":
history = []
time_steps_random = 10
cc_to_n = {'RR':0, 'RP':1, 'RS':2, 'PR':3, 'PP':4, 'PS':5, 'SR':6, 'SP':7, 'SS':8}
n_to_cc = {0:'RR', 1:'RP', 2:'RS', 3:'PR', 4:'PP', 5:'PS', 6:'SR', 7:'SP', 8:'SS'}
c_to_n = {'R':0, 'P':1, 'S':2}
n_to_c = {0:'R', 1:'P', 2:'S'}
n_to_score = {0:0, 1:-1, 2:1, 3:1, 4:0, 5:-1, 6:-1, 7:1, 8:0}
match_length = 1
decay = 0.75
else:
history.append(cc_to_n[output+input])
if len(history) >= time_steps_random:
prediction = strategy1()
if random.random() < prediction[0] / sum(prediction):
output = "P"
elif random.random() < prediction[1] / sum(prediction[1:]):
output = "S"
else:
output = "R"
else:
output = random.choice(['R','P','S'])
def strategy1():
longest = 0
prediction = [1]*3
for t in range(match_length, len(history)-1):
if history[t-match_length:t] == history[-match_length:]:
prediction_index = c_to_n[n_to_cc[history[t]][1]]
prediction = [x * decay for x in prediction]
prediction[prediction_index] += 1
return prediction