Author | pyfex |
Submission date | 2011-07-05 17:13:07.196338 |
Rating | 6737 |
Matches played | 4472 |
Win rate | 75.45 |
Use rpsrunner.py to play unranked matches on your computer.
# See http://overview.cc/RockPaperScissors for more information about rock, paper, scissors
# Bayes/Switching Hybrid. Use bayes statistic to choose the strategy.
# Fix the counter_prob function
from collections import defaultdict
import operator
import random
if input == "":
score = {'RR': 0, 'PP': 0, 'SS': 0, 'PR': 1, 'RS': 1, 'SP': 1,'RP': -1, 'SR': -1, 'PS': -1,}
p_add = {'RR': 1, 'PP': 1, 'SS': 1, 'PR': 0, 'RS': 0, 'SP': 0,'RP': 0, 'SR': 0, 'PS': 0,}
beat = {'P': 'S', 'S': 'R', 'R': 'P'}
cede = {'P': 'R', 'S': 'P', 'R': 'S'}
rps = ['R', 'P', 'S']
def counter_prob(probs):
weighted_list = []
for h in ['R', 'P', 'S']:
weighted = 0
for p in probs.keys():
points = score[h+p]
prob = probs[p]
weighted += points * prob
weighted_list.append((h, weighted))
return max(weighted_list, key=operator.itemgetter(1))[0]
patterndict = defaultdict(str)
played_probs = defaultdict(lambda: 1)
prediction = []
performance = [1] * 6
hist = ""
my = opp = ""
output = random.choice(["R", "P", "S"])
else:
played_probs[input] += 1
for i, p in enumerate(prediction):
performance[i] += p_add[p+input]
for length in range(min(14, len(hist)), 0, -2):
pattern = patterndict[hist[-length:]]
patterndict[hist[-length:]] += output + input
hist += output + input
my = opp = ""
for length in range(min(14, len(hist)), 0, -2):
pattern = patterndict[hist[-length:]]
if pattern != "":
my = pattern[-2]
opp = pattern[-1]
break
probs = {}
for hand in rps:
probs[hand] = played_probs[hand]
if my and opp:
prediction = [opp, beat[opp], cede[opp], my, cede[my], beat[my]]
for hand in rps:
probs[hand] *= reduce(operator.mul, [performance[i] for i, p in enumerate(prediction) if p == hand])
else:
prediction = []
output = counter_prob(probs)