This program has been disqualified.
Author | EbTech |
Submission date | 2011-06-22 19:03:43.596595 |
Rating | 1836 |
Matches played | 2237 |
Win rate | 18.73 |
# after a wrong prediction, drops the strategy with 50% probability
import random
if not input:
beat = {'R':'P','P':'S','S':'R'}
fusion = {'RP':'a','PS':'b','SR':'c','PR':'d','SP':'e','RS':'f','RR':'g','PP':'h','SS':'i'}
limits = [5,12,28,64]
moves = ["","",""]
numPredictors = 6*len(limits)*len(moves)
numMetapredictors = 6
predictors = [random.choice("RPS") for i in range(numPredictors)]
predictorscore = [2*random.random() for i in range(numPredictors)]
opponentscore = [2*random.random() for i in range(numPredictors)]
metapredictors = [random.choice("RPS") for i in range(numMetapredictors)]
metascore = [20,10,0,0,0,0]
threat = [0,0,0]
outcome = 0
length = 0
output = random.choice(['R','P','S'])
wait = random.randint(18, 30)
wins = 0
else:
oldoutcome = outcome
if (beat[input] == output):
outcome = 1
elif (input == beat[output]):
outcome = -1
else:
outcome = 0
if wins < 50:
wins += outcome
threat[oldoutcome + 1] *= 0.958
threat[oldoutcome + 1] -= 0.042*outcome
for i in range(numPredictors):
predictorscore[i] *= 0.8
predictorscore[i] += (beat[input] == predictors[i])
predictorscore[i] -= (input == beat[predictors[i]])
opponentscore[i] *= 0.8
opponentscore[i] += (beat[output] == predictors[i])
opponentscore[i] -= (output == beat[predictors[i]])
if beat[input] == predictors[i] and random.random() < 0.5:
predictorscore[i] = 0
if beat[output] == predictors[i] and random.random() < 0.5:
opponentscore[i] = 0
for i in range(numMetapredictors):
metascore[i] *= 0.958
metascore[i] += (beat[input] == metapredictors[i])
metascore[i] -= (input == beat[metapredictors[i]])
if beat[input] == metapredictors[i] and random.random() < 0.5:
metascore[i] = 0
moves[0] += input
moves[1] += output
moves[2] += fusion[input+output]
length += 1
for z in range(3*len(limits)):
j = min([length-1, limits[z//3]])
while not moves[z%3][length-j:length] in moves[z%3][0:length-1]:
j-=1
i = moves[z%3].rfind(moves[z%3][length-j:length], 0, length-1)
predictors[2 * z] = moves[0][i+j]
predictors[2*z+1] = moves[1][i+j]
for i in range(numPredictors/3, numPredictors):
predictors[i] = beat[predictors[i - numPredictors/3]]
metapredictors[0] = predictors[predictorscore.index(min(predictorscore))]
metapredictors[1] = beat[predictors[opponentscore.index(min(opponentscore))]]
for i in range(numMetapredictors/3, numMetapredictors):
metapredictors[i] = beat[metapredictors[i - numMetapredictors/3]]
if wins >= 50:
output = "R"
elif length < wait or random.random() < 0.1-0.4*threat[outcome+1]:
output = random.choice("RPS")
else:
output = metapredictors[metascore.index(min(metascore))]