Author | Dan Haiduc |
Submission date | 2011-07-06 11:06:03.395860 |
Rating | 2435 |
Matches played | 4297 |
Win rate | 19.25 |
Use rpsrunner.py to play unranked matches on your computer.
##########################################
# Perceptronator! 0.1e #
##########################################
# Uses perceptrons to predict your moves #
##########################################
# Changes:
# 0.2: Removed punishment
# 0.3: Reduced move history to 3
# 0.4: Increased move history to 10
# 0.5: Attempts to remember learned values from previous games
# Gives more importance to recent moves
# Fixed bug (moves remembered were 0)
# 0.s: Inverse-squared the history importance
# 0.6: Increased moves history to 100
# Attempts to remember history of games (better than random)
# 0.7: Added punishment back
# 0.8: Reverted to linear history importance
# 0.9: Disabled forgetting, fixed punishing bug
# 0.10: Realized improvement was because of randomness
# Changed moves remembered to 2
# 0.1e: Experiment: switch to next move estimation
import random
#Global vars:
class cfg:
try:
print PredRock
except:
PredRock=PredPaper=PredSciss=[]
try:
print history
except:
history=[]
#Moves to remember
Moves=4
#Beat a move
def Beat(move):
if move=="R":
output="S"
if move=="P":
output="R"
if move=="S":
output="P"
def Train(network, reward, hist):
if len(hist)==cfg.Moves:
#First, "forget" the past...
#for x in xrange(cfg.Moves):
# for y in xrange(3):
# network[x][y]*=0.95
#Now, the magic!
for x in xrange(cfg.Moves):
value=reward*(x+1.0)/cfg.Moves
#Punish the other weights
for y in xrange(3):
network[x][y]-=reward/2.0
if hist[x]=="R":
network[x][0]+=value
elif hist[x]=="P":
network[x][1]+=value
elif hist[x]=="S":
network[x][2]+=value
def Eval(network, h):
if len(h)==cfg.Moves:
result=0.0
for x in xrange(cfg.Moves):
if h[x]=="R":
result+=network[x][0]
elif h[x]=="P":
result+=network[x][1]
elif h[x]=="S":
result+=network[x][2]
return result
#Initialize
if input=="":
#The history variable - holds last cfg.Moves/2 moves, starts randomly
#Format: me, them, me, them...
for i in xrange(cfg.Moves):
cfg.history+=random.choice(["R", "P", "S"])
#The neural network weights - predicts next move (supposedly)
#This is an implementation of a perceptron-like thing
for a in xrange(cfg.Moves):
for b in [cfg.PredRock, cfg.PredPaper, cfg.PredSciss]:
b.append([0.0, 0.0, 0.0])
#Just start with a random move
output=random.choice(["R", "P", "S"])
else:
#Train the things
if input=="R":
Train(cfg.PredRock, 1.0, cfg.history)
Train(cfg.PredPaper, -1.0, cfg.history)
Train(cfg.PredSciss, -1.0, cfg.history)
elif input=="P":
Train(cfg.PredRock, -1.0, cfg.history)
Train(cfg.PredPaper, 1.0, cfg.history)
Train(cfg.PredSciss, -1.0, cfg.history)
elif input=="S":
Train(cfg.PredRock, -1.0, cfg.history)
Train(cfg.PredPaper, -1.0, cfg.history)
Train(cfg.PredSciss, 1.0, cfg.history)
#Predict a move
ro=Eval(cfg.PredRock, cfg.history)
pa=Eval(cfg.PredPaper, cfg.history)
sc=Eval(cfg.PredSciss, cfg.history)
if ro>pa:
pred=ro
else:
pred=pa
if pred<sc:
pred=sc
cfg.history+=output
if pred==ro:
Beat("R")
elif pred==pa:
Beat("P")
else:
Beat("S")
#Manage history
cfg.history+=input
cfg.history.pop(0)
cfg.history.pop(0)