Author | Antibayes |
Submission date | 2011-07-18 21:55:52.884536 |
Rating | 5360 |
Matches played | 4022 |
Win rate | 52.11 |
Use rpsrunner.py to play unranked matches on your computer.
if input:
input = output
if input == "":
import random
import math
class NN(object):
learnrate = {"win": 0.01, "tie": 0.2, "loss": 0.5}
def __init__(self, ins):
#number of nodes
self.ni = ins
self.no = 3
#init activations
self.ia = [0] * self.ni
self.oa = [0] * self.no
#init weights
#initial weights need(?) to be below 3/self.ni
self.weights = [[random.uniform(0, 3./self.ni) for i in range(self.ni)]
for j in range(self.no)]
def feed(self, inps):
self.ia = inps
self.oa = [sum(self.weights[j][i] * self.ia[i]
for i in range(self.ni))
for j in range(self.no)]
return self.oa
def train(self, target, last_round):
#hebb learning rule
#factor of 1/self.ni*3 is there to ensure output
#in range 0,1 if lernrates are < 1
#and inputs are 1 for every third inputnode
#maybe important for convergence?
result_last_round = result[last_round]
learnrate = self.learnrate[result_last_round]
error = map(lambda x, y: x - y, target, self.oa)
for i in range(self.ni):
for j in range(self.no):
self.weights[j][i] += (learnrate * error[j] * self.ia[i] /
self.ni * 3)
result = {"RS": "win", "SP": "win", "PR": "win",
"RR": "tie", "SS": "tie", "PP": "tie",
"SR": "loss", "PS": "loss", "RP": "loss"}
num_moves = 5 #number of recent rounds the neurons get to see
nn = NN(num_moves * 6)
ourmoves = ""
oppmoves = ""
nnpred = "S"
round_cnt = 0
score = 0
scores = {"win": 1, "tie": 0, "loss": -1}
def moves_to_repr(moves):
repr_lookup = {"R": [1, 0, 0], "S": [0, 1, 0], "P" : [0, 0, 1]}
nninput = []
for c in moves:
nninput.extend(repr_lookup[c])
return nninput
def repr_to_move(nnoutput):
ciphers = "RSP"
index = max(enumerate(nnoutput), key=lambda x:x[1])[0]
return ciphers[index]
def feedneurons():
inps = moves_to_repr(ourmoves[-num_moves:] + oppmoves[-num_moves:])
ourmove = nn.feed(inps)
return repr_to_move(ourmove)
def trainneurons(nn_last_round):
win = dict(zip("RSP", "PRS"))
target = moves_to_repr(win[oppmoves[-1]])
nn.train(target, nn_last_round)
output = random.choice("RSP")
ourmoves += output
else:
oppmoves += input
round_cnt += 1
if round_cnt < 5:
output = random.choice("RSP")
else:
nn_last_round = nnpred + oppmoves[-1]
trainneurons(nn_last_round)
score = 0.9 * score + scores[result[nn_last_round]]
nnpred = feedneurons()
if score > 0.5: #do we have confidence?
output = nnpred
else: #fall back if we cannot beat you
output = random.choice("RSP")
ourmoves += output
output = {'R':'P','P':'S','S':'R'}[output]