Author | momo |
Submission date | 2011-08-31 09:06:22.562072 |
Rating | 7104 |
Matches played | 2957 |
Win rate | 71.8 |
Use rpsrunner.py to play unranked matches on your computer.
import random
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def lowest(v):
return random.choice([i for i in range(len(v)) if min(v) == v[i]])
def best(c):
return highest([c[1]-c[2], c[2]-c[0], c[0]-c[1]])
if(1):
if (input == ""):
N = 1
mem = 4
AR1 = 0.85
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
table = {}
fade = 0.001
decay2 = 0.5
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
total=0
r=0
M = 5
models = [1]*(M*3+1)
state = [0] * (M*3+1)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
prognosis = [random.choice(st) for i in range(M*3+1)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
state = [ AR1 * state[i] + res[prognosis[i]][tu] * models[i] for i in range(M*3+1)]
r = res[yo][tu]
total = total + r
count = [[0,0,0],[0,0,0]]
if (N > mem + 1):
p = hi[N-mem-1:N-1]
s = hi[N-mem-2]
key0 = p
for key in [key0, [(i[0],-1) for i in key0], [ (-1,i[1]) for i in key0]]:
k = tuple([s] + key)
if (k in table): table[k] += 1+N*fade
else: table[k]= 1+N*fade
for y in st:
for t in st:
key0 = p
for key in [key0, [(i[0],-1) for i in key0], [(-1,i[1]) for i in key0]]:
k = tuple([(y,t)] + key)
if (k in table):
z = table[k]
count[0][y] += z
count[1][t] += z
count1 = [[count[0][i] + count[1][(i+0)% 3] for i in st]]
count1 += [[count[0][i] + count[1][(i+1)% 3] for i in st]]
count1 += [[count[0][i] + count[1][(i+2)% 3] for i in st]]
prop = [random.choice(st) for i in range(6)]
for pos in range(N-1,max(3, N-200),-1):
if (hi[pos-1] == hi[N-2] and hi[pos] == hi[N-1]):
prop[0] = hi[pos-2][0]
if (random.random() < decay2): break
for pos in range(N-1,max(3, N-200),-1):
if (hi[pos-1][1] == hi[N-2][1] and hi[pos][1] == hi[N-1][1]):
prop[5] = hi[pos-2][1]
if (random.random() < decay2): break
i = 0; prognosis[i] = best(count1[0])
i += 3; prognosis[i] = best(count1[1])
i += 3; prognosis[i] = best(count1[2])
i += 3; prognosis[i] = prop[0]
i += 3; prognosis[i] = prop[5]
assert(i+3==3*M)
# modelrandom
prognosis[3*M] = random.choice(st)
for i in range(M):
prognosis[i*3 + 1] = (prognosis[i*3] + 1) % 3
prognosis[i*3 + 2] = (prognosis[i*3+1] + 1) % 3
best = highest(state)
choices += [best]
yo = prognosis[best]
output = states[yo]
N = N + 1