Author | momo |
Submission date | 2011-08-31 09:26:29.833692 |
Rating | 6795 |
Matches played | 2866 |
Win rate | 68.7 |
Use rpsrunner.py to play unranked matches on your computer.
import random
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def lowest(v):
return random.choice([i for i in range(len(v)) if min(v) == v[i]])
def best(c):
return highest([c[1]-c[2], c[2]-c[0], c[0]-c[1]])
if (1):
if (input == ""):
N = 1
AR1 = 0.90
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
decay = 0.001
decay2 = 0.5
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
total=0
r=0
M = 8
models = [1]*(M*3+1)
state = [1]*(M*3+1)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
prognosis = [random.choice(st) for i in range(M*3+1)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
state = [ AR1 * state[i] + res[prognosis[i]][tu] * models[i] for i in range(M*3+1)]
r = res[yo][tu]
total = total + r
if 1:
count = [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]]
prop = [random.choice(st) for i in range(6)]
for pos in range(max(3, N-100), N-1):
if (hi[pos-1] == hi[N-2] and hi[pos] == hi[N-1]):
count[1][hi[pos-2][1]] += 1 + pos * decay
if (random.random() < decay2):
prop[0] = hi[pos-2][0]
if (hi[pos-1][0] == hi[N-2][0] and hi[pos-1][0] == hi[N-1][0]):
count[3][hi[pos-2][1]] += 1 + pos * decay
if (hi[pos-1][1] == hi[N-2][1] and hi[pos-1][1] == hi[N-1][1]):
count[5][hi[pos-2][1]] += 1 + pos * decay
if (random.random() < decay2):
prop[5] = hi[pos-2][0]
prognosis[0] = (lowest([1.2*count[1][i] + count[3][i] + count[5][i] for i in range(3)]) +1) % 3
prognosis[3] = (highest([1.2*count[1][i] + count[3][i] + count[5][i] for i in range(3)]) +1) % 3
prognosis[6] = (lowest([count[1][i] + 1.2*count[3][i] + count[5][i] for i in range(3)]) +1) % 3
prognosis[9] = (highest([count[1][i] + 1.2*count[3][i] + count[5][i] for i in range(3)]) +1) % 3
prognosis[12] = (lowest([count[1][i] + count[3][i] + 1.2*count[5][i] for i in range(3)]) +1) % 3
prognosis[15] = (highest([count[1][i] + count[3][i] + 1.2*count[5][i] for i in range(3)]) +1) % 3
prognosis[18] = prop[0]
prognosis[21] = prop[5]
# modelrandom
prognosis[3*M] = (random.choice(hi)[1] + 2) % 3
for i in range(M):
prognosis[i*3 + 1] = (prognosis[i*3] + 1) % 3
prognosis[i*3 + 2] = (prognosis[i*3+1] + 1) % 3
thebest = highest(state)
choices += [thebest]
yo = prognosis[thebest]
output = states[yo]
N = N + 1