Author | momo |
Submission date | 2011-09-02 09:17:44.526933 |
Rating | 6880 |
Matches played | 2920 |
Win rate | 70.55 |
Use rpsrunner.py to play unranked matches on your computer.
import random
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def lowest(v):
return random.choice([i for i in range(len(v)) if min(v) == v[i]])
def best(c):
return highest([c[1]-c[2], c[2]-c[0], c[0]-c[1]])
if(1):
if (input == ""):
N = 1
AR1 = 0.85
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
table = {}
fade = 0.01
decay2 = 0.50
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
total=0
r=0
MEM = [4,5] # 3, 5
MEM2 = [3,2]
M = len(MEM)*3 + len(MEM2)*2
models = [1]*(M*3+1)
state = [0] * (M*3+1)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
hit = states[yo]+states[tu]
prognosis = [random.choice(st) for i in range(M*3+1)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
hit += states[yo]+states[tu]
state = [ AR1 * state[i] + res[prognosis[i]][tu] * models[i] for i in range(M*3+1)]
r = res[yo][tu]
total = total + r
count = [[[0,0,0],[0,0,0],[0,0,0],[0,0,0]],[[0,0,0],[0,0,0],[0,0,0],[0,0,0]],[[0,0,0],[0,0,0],[0,0,0],[0,0,0]]]
for m in range(len(MEM)):
mem = MEM[m]
if (N > mem + 1):
p = hi[N-mem-1:N-1]
s = hi[N-mem-2]
key0 = p
for key in [key0, [(i[0],-1) for i in key0], [ (-1,i[1]) for i in key0]]:
k = tuple([s] + key)
weight = 1+N*fade
if (k in table): table[k] = weight
else: table[k]= weight
for y in st:
for t in st:
key0 = p
for key in [key0, [(i[0],-1) for i in key0], [(-1,i[1]) for i in key0]]:
k = tuple([(y,t)] + key)
if (k in table):
z = table[k]
count[m][0][y] += z
count[m][1][t] += z
countagg = [[],[],[],[],[],[],[],[],[]]
for m in range(len(MEM)):
countagg[m] = [[count[m][0][i] + count[m][1][(i+0)% 3] for i in st]]
countagg[m] += [[count[m][0][i] + count[m][1][(i+1)% 3] for i in st]]
countagg[m] += [[count[m][0][i] + count[m][1][(i+2)% 3] for i in st]]
i = 0
prop = [random.choice(st) for j in range(len(MEM2)*2)]
for m in MEM2:
if(N > m):
key = hit[-m:]
pos = N*2 - m*2
prop[i] = sdic[hit[pos-1]]
prop[i+1] = sdic[hit[pos-2]]
while (random.random() < decay2):
pos = hit.rfind(key,0,pos)
if pos > 1:
prop[i] = sdic[hit[pos-1]]
prop[i+1] = sdic[hit[pos-2]]
else:
break
i += 2
i = -3;
for m in range(len(MEM)):
i += 3; prognosis[i] = best(countagg[m][0])
i += 3; prognosis[i] = best(countagg[m][1])
i += 3; prognosis[i] = best(countagg[m][2])
for m in range(len(MEM2)):
i += 3; prognosis[i] = (prop[m])
i += 3; prognosis[i] = (prop[m+1])
i += 3
assert(i==3*M)
# modelrandom
prognosis[3*M] = random.choice(st)
for i in range(M):
prognosis[i*3 + 1] = (prognosis[i*3] + 1) % 3
prognosis[i*3 + 2] = (prognosis[i*3+1] + 1) % 3
best = highest(state[0:i+1])
choices += [best]
yo = prognosis[best]
output = states[yo]
N = N + 1