Author | tk2 |
Submission date | 2014-07-25 02:35:45.209757 |
Rating | 6712 |
Matches played | 615 |
Win rate | 67.97 |
Use rpsrunner.py to play unranked matches on your computer.
import random
import math
def model_evidence(stat, lg):
c0 = lg[3] - 3.0 * lg[1]
return len(stat) * c0 - sum([lg[sum(y)+3] - sum([lg[x+1] for x in y]) for y in stat])
def action(kappa):
p = [random.gammavariate(x+1,1) for x in kappa]
e = [p[(i+2)%3] - p[(i+1)%3] for i in xrange(3)]
for i in xrange(3):
if e[i] < e[(i+1)%3] == e[(i+2)%3]:
return random.choice([(i+1)%3,(i+2)%3])
if e[i] <= e[(i+1)%3] < e[(i+2)%3]:
return (i+2)%3
return random.choice([0,1,2])
if input == '':
lg = [0.0] * 1010
for i in xrange(2,1010):
lg[i] = lg[i-1] + math.log(i-1)
hands = 'RPS'
rhands = { 'R': 0, 'P': 1, 'S': 2 }
stat = [[[0,0,0] for i in xrange(9**n)] for n in xrange(4)]
c, s = 0, 0
else:
c += 1
o = rhands[input]
for n in xrange(min(4,c)):
stat[n][s%(9**n)][o] += 1
s = 9 * (s % 81) + 3 * m + o
ei, em = 0, model_evidence(stat[0], lg)
for n in xrange(1,3):
e = model_evidence(stat[n], lg)
if e > em:
ei, em = n, e
m = action(stat[ei][s%(9**ei)])
output = hands[m]