Author | momo |
Submission date | 2012-04-25 13:27:10.298987 |
Rating | 7180 |
Matches played | 776 |
Win rate | 71.91 |
Use rpsrunner.py to play unranked matches on your computer.
import random
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def lowest(v):
return random.choice([i for i in range(len(v)) if min(v) == v[i]])
def best(c):
return highest([c[1]-c[2], c[2]-c[0], c[0]-c[1]])
def mean(c):
return sum(c)/length(c)
# alpha in [0,1]: greediness
def attack(yo, tu, alpha):
r = res[yo][tu]
p1 = yo
if r == -1:
p1 = (yo + 1) % 3
elif r == 0 and random.random() < alpha:
p1 = (yo + 2) % 3
return p1
def metric(hi, n,m):
countn = [[0,0,0],[0,0,0]]
countm = [[0,0,0],[0,0,0]]
def decay(i): return 1/(i+1.0)
w = sum([decay(i) for i in range(7)])
h1 = h2 = h3 = 1
for i in range(min(n,m, 15)):
if h1 and hi[n-i] == hi[m-i]:
w += decay(i)
else:
h1 = 0
if h2 and hi[n-i][1] == hi[m-i][1]:
w += decay(i)
else:
h2 = 0
if h3 and hi[n-i][0] == hi[m-i][0]:
w += decay(i)
else:
h3 = 0
return w
def cumsum(iterable):
iterable= iter(iterable)
s= iterable.next()
yield s
for c in iterable:
s= s+ c
yield s
def weightedchoice(v, w, no):
ww = sum(w)
if (ww == 0): return random.choice(v)
w = [(ws/ww)**no for ws in w]
ww = sum(w)
ra = ww*random.random()
j = 0
for i in cumsum(w):
# print(r,i)
if ra <= i: break
j+= 1
return v[j]
if(1):
if (input == ""):
N = 1
AR1 = .85#0.85
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
forwardbias = 2
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
MEM1 = MEM2 = MEM3 = []
MEM4 = [6]
M1 = len(MEM1)*3
M2 = len(MEM2)*2
M3 = len(MEM3)
M4 = len(MEM4)*3
M = M1 + M2 + M3 + M4
models = ([1,.7,.7]*M4)
state = [0] * (M*3)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
hiyt = states[yo]+states[tu]
hit = states[yo]+" "
hiy = " " + states[tu]
prognosis = [random.choice(st) for i in range(M*3)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
hiyt += states[yo]+states[tu]
hit += states[yo]+" "
hiy += " " + states[tu]
if (res[yo][tu] == 1):
state = [state[i] + 1.5*(yo==prognosis[i]) for i in range(M*3)]
else:
state = [state[i] + (1+res[prognosis[i]][tu]) * models[i] for i in range(M*3)]
i = -3
# Squad
for h in MEM4:
proby = [0.0,0.0,0.0]
probt = [0.0,0.0,0.0]
for j in range(h):
k = max([random.choice(range(N)) for l in range(forwardbias)])
m = metric(hi, k-1, N-1)
proby[(hi[k][0])]+= m
probt[(hi[k][1])]+= m
i += 3; prognosis[i] = best([probt[l] +proby[(l+0)% 3] for l in st])
i += 3; prognosis[i] = best([probt[l] +proby[(l+2)% 3] for l in st])
i += 3; prognosis[i] = best([probt[l] +proby[(l+1)% 3] for l in st])
#i += 3; prognosis[i] = (best(proby))
#i += 3; prognosis[i] = (best(probt))
i += 3; assert(i==3*M)
for j in range(M1 + M2+M4):
prognosis[j*3 + 1] = (prognosis[j*3] + 1) % 3
prognosis[j*3 + 2] = (prognosis[j*3+1] + 1) % 3
ms = min(state)
state2 = [s - ms for s in state]
b = weightedchoice(range(M*3), state2, 2)
yo = prognosis[b]
output = states[yo]
N = N + 1