Author | david.werecat |
Submission date | 2014-12-12 23:34:28.431904 |
Rating | 7086 |
Matches played | 496 |
Win rate | 74.6 |
Use rpsrunner.py to play unranked matches on your computer.
#Created by David Catt on December 12, 2014
import random
class CtxMap:
def __init__(self, order):
self.order = order
self.mask = 3 ** order
self.prob = [random.randint(0, 2) for a in range(0, self.mask)]
self.ctx = 0
def predict(self):
return self.prob[self.ctx]
def update(self, val):
self.prob[self.ctx] = val
self.ctx = ((self.ctx * 3) + val) % self.mask
class CtxModel:
def __init__(self, order, decay):
self.order = order
self.decay = decay
self.mask = 3 ** (order + 1)
self.prob = [0.0] * self.mask
self.ctx = 0
def predict(self):
tvl = 0
tpr = 0.0
prb = 0.0
for i in range(0, 3):
prb = self.prob[self.ctx + i]
if prb > tpr:
tvl = i
tpr = prb
return tvl
def update(self, val):
for i in range(0, 3):
self.prob[self.ctx + i] *= self.decay
self.prob[self.ctx + val] += 1.0
self.ctx = ((self.ctx + val) * 3) % self.mask
class ModelSwitch:
def __init__(self, count, decay):
self.value = [1,0,-1,-1,1,0,0,-1,1]
self.count = count
self.decay = decay
self.offset = [0.0] * count
self.weigh = [0.0] * count
self.pred = [0] * count
def setoffset(self, idx, val):
self.offset[idx] = val
def setvalue(self, idx, val):
self.pred[idx] = val
def predict(self):
tvl = 0
tpr = -1.0
prb = 0.0
for i in range(0, self.count):
prb = self.weigh[i] + self.offset[i]
if prb > tpr:
tvl = self.pred[i]
tpr = prb
return tvl
def update(self, val):
for i in range(0, self.count):
self.weigh[i] = (self.weigh[i] * self.decay) + self.value[(val * 3) + self.pred[i]]
if input == "":
winner = [1,2,0]
nval = {"R":0,"P":1,"S":2,"":0}
cval = ["R","P","S"]
amdl = [CtxMap((i % 6) + 1) if i < 12 else CtxMap(((i % 6) + 1) * 2) for i in range(0, 17)]
omdl = [CtxModel((i % 6) + 1, 0.93) if i < 12 else CtxModel(((i % 6) + 1) * 2, 0.93) for i in range(0, 17)]
zmdl = CtxModel(0, 0.93)
msse = ModelSwitch(109, 0.93)
msse.setoffset(108, -0.1)
lval = 0
else:
val = nval[input]
for i in range(0, 6):
amdl[i].update(val)
amdl[i+6].update(lval)
omdl[i].update(val)
omdl[i+6].update(lval)
for i in range(12, 17):
amdl[i].update(val)
amdl[i].update(lval)
omdl[i].update(val)
omdl[i].update(lval)
msse.update(val)
pv = 0
for i in range(0, 17):
pv = amdl[i].predict()
msse.setvalue(i, pv)
msse.setvalue(i + 17, winner[pv])
msse.setvalue(i + 34, winner[winner[pv]])
pv = omdl[i].predict()
msse.setvalue(i + 51, pv)
msse.setvalue(i + 68, winner[pv])
msse.setvalue(i + 85, winner[winner[pv]])
pv = zmdl.predict()
msse.setvalue(102, pv)
msse.setvalue(103, winner[pv])
msse.setvalue(104, winner[winner[pv]])
pv = nval[input]
msse.setvalue(105, pv)
msse.setvalue(106, winner[pv])
msse.setvalue(107, winner[winner[pv]])
msse.setvalue(108, random.randint(0, 2))
lval = winner[msse.predict()]
output = cval[lval]