Author | ben haley |
Submission date | 2012-08-12 06:14:32.377563 |
Rating | 7623 |
Matches played | 801 |
Win rate | 75.03 |
Use rpsrunner.py to play unranked matches on your computer.
""" Use multiple top strategies from the leaderboard and select
the one that is performing the best historically.
benjamin.haley@gmail.com Aug 2012
borrowed stragies from:
pyfex (http://www.rpscontest.com/entry/135001)
dllu (http://www.rpscontest.com/entry/338001)
"""
import random
class s1:
def __init__(self):
self.hist = ""
self.opp_played = []
self.beat = {'P': 'S', 'S': 'R', 'R': 'P'}
self.beat2 = {'PP': 'S', 'SS': 'R', 'RR':'P', 'PS': 'S', 'PR': 'P', 'RS': 'R', 'RP': 'P', 'SP': 'S', 'SR': 'R'}
self.complement = {'PS': 'R', 'PR': 'S', 'RS': 'P', 'RP': 'S', 'SP': 'R', 'SR': 'P'}
self.score = {'RR': 0, 'PP': 0, 'SS': 0, 'PR': 1, 'RS': 1, 'SP': 1,'RP': -1, 'SR': -1, 'PS': -1,}
self.output = random.choice(["R", "P", "S"])
self.candidates1 = [self.output, self.output]
self.candidates2 = [self.output] * 5
self.performance1 = [0, 0]
self.performance2 = [(0,0)] * 5
def predict(self, input):
self.hist += self.output.lower()+input
self.opp_played.append(input)
self.performance1[0] += self.score[self.candidates1[0]+input]
self.performance1[1] += self.score[self.candidates1[1]+input]
for i, p in enumerate(self.candidates2):
self.performance2[i] = ({1:self.performance2[i][0]+1, 0: self.performance2[i][0], -1: 0}[self.score[p+input]],
self.performance2[i][1]+self.score[p+input])
index1 = self.performance1.index(max(self.performance1))
index2 = self.performance2.index(max(self.performance2, key=lambda x: x[0]**3+x[1]))
self.candidates1[1] = self.beat[random.choice(self.opp_played)]
for length in range(min(10, len(self.hist)-2), 0, -2):
search = self.hist[-length:]
idx = self.hist.rfind(search, 0, -2)
if idx != -1:
my = self.hist[idx+length].upper()
opp = self.hist[idx+length+1]
self.candidates2[0] = self.beat[opp]
self.candidates2[1] = self.beat[self.beat[my]]
self.candidates2[2] = self.beat2[self.beat[my] + self.beat[self.beat[opp]]]
self.candidates2[3] = self.beat2[self.beat[opp] + self.beat[self.beat[my]]]
self.candidates2[4] = self.complement[''.join(sorted(set(self.candidates2[0] + self.candidates2[1] + self.candidates2[3])))]
break
else:
candidates = [random.choice(['R', 'P', 'S'])] * 5
self.candidates1[0] = self.candidates2[index2]
self.output = self.candidates1[index1]
return self.output
class s2:
def __init__(self):
self.numPre = 18
self.numMeta = 6
self.limit = 8
self.beat={'R':'P','P':'S','S':'R'}
self.moves=['','','']
self.pScore=[[3]*self.numPre,[3]*self.numPre,[3]*self.numPre,[3]*self.numPre,[3]*self.numPre,[3]*self.numPre]
self.centrifuge={'RP':'a','PS':'b','SR':'c','PR':'d','SP':'e','RS':'f','RR':'g','PP':'h','SS':'i'}
self.length=0
self.p=[random.choice("RPS")]*self.numPre
self.m=[random.choice("RPS")]*self.numMeta
self.mScore=[3]*self.numMeta
self.output = random.choice('RPS')
def predict(self, input):
for i in range(self.numPre):
self.pScore[0][i]=0.8*self.pScore[0][i]+((input==self.p[i])-(input==self.beat[self.beat[self.p[i]]]))*3
self.pScore[1][i]=0.8*self.pScore[1][i]+((self.output==self.p[i])-(self.output==self.beat[self.beat[self.p[i]]]))*3
self.pScore[2][i]=0.87*self.pScore[2][i]+(input==self.p[i])*3.3-(input==self.beat[self.p[i]])*0.9-(input==self.beat[self.beat[self.p[i]]])*3
self.pScore[3][i]=0.87*self.pScore[3][i]+(self.output==self.p[i])*3.3-(self.output==self.beat[self.p[i]])*0.9-(self.output==self.beat[self.beat[self.p[i]]])*3
self.pScore[4][i]=(self.pScore[4][i]+(input==self.p[i])*3)*(1-(input==self.beat[self.beat[self.p[i]]]))
self.pScore[5][i]=(self.pScore[5][i]+(self.output==self.p[i])*3)*(1-(self.output==self.beat[self.beat[self.p[i]]]))
for i in range(self.numMeta):
self.mScore[i]=(self.mScore[i]+(input==self.m[i]))*(1-(input==self.beat[self.beat[self.m[i]]]))
self.moves[0]+=self.centrifuge[input+self.output]
self.moves[1]+=input
self.moves[2]+=self.output
self.length+=1
for y in range(3):
j=min([self.length,self.limit])
while j>=1 and not self.moves[y][self.length-j:self.length] in self.moves[y][0:self.length-1]:
j-=1
i = self.moves[y].rfind(self.moves[y][self.length-j:self.length],0,self.length-1)
self.p[0+2*y] = self.moves[1][j+i]
self.p[1+2*y] = self.beat[self.moves[2][j+i]]
for i in range(6,6*3):
self.p[i]=self.beat[self.beat[self.p[i-6]]]
for i in range(0,6,2):
self.m[i]= self.p[self.pScore[i ].index(max(self.pScore[i ]))]
self.m[i+1]=self.beat[self.p[self.pScore[i+1].index(max(self.pScore[i+1]))]]
self.output = self.beat[self.m[self.mScore.index(max(self.mScore))]]
if max(self.mScore)<0.07 or random.randint(3,40)>self.length:
self.output=self.beat[random.choice("RPS")]
if input == '':
history = ''
s1_ns = {}
s2_ns = {}
record = {'s1':0, 's2':0}
values = {
'RR': 0,
'RP': 1,
'RS': -1,
'PR': -1,
'PP': 0,
'PS': 1,
'SR': 1,
'SP': -1,
'SS': 0,
}
s1_ = s1()
s2_ = s2()
else:
history += input
record['s1'] += values[input + s1_guess]
record['s2'] += values[input + s2_guess]
s1_.predict(input)
s2_.predict(input)
s1_guess = s1_.output
s2_guess = s2_.output
output = s1_guess if record['s1'] > record['s2'] else s2_guess
print record, s1_guess, s2_guess, output, s1_guess == s2_guess