Author | Sean |
Submission date | 2016-08-23 14:51:06.456039 |
Rating | 6446 |
Matches played | 397 |
Win rate | 62.47 |
Use rpsrunner.py to play unranked matches on your computer.
if input == "":
import math
log = math.log
exp = math.exp
log_half = log(0.5)
third = 1.0 / 3.0
log_third = log(1.0/3.0)
log_fourth = log(1.0/4.0)
log_two_thirds = log(2.0/3.0)
def log_add(x, y):
if y > x:
x, y = y, x
d = y - x
if d < -60:
return x
return x + log(1.0 + exp(d))
class Blender:
def __init__(self, models):
self.log_ps = [0 for _ in xrange(models)]
def update(self, cond_probs):
for k, p in enumerate(cond_probs):
self.log_ps[k] += log(p)
def predict(self, cond_probss):
log_ps = [float("-inf") for _ in cond_probss[0]]
for model, cond_probs in enumerate(cond_probss):
for i, p in enumerate(cond_probs):
log_ps[i] = log_add(log_ps[i], self.log_ps[model] + log(p))
log_p0 = min(log_ps)
ps = [exp(log_p - log_p0) for log_p in log_ps]
rt = 1.0 / sum(ps)
for i, p in enumerate(ps):
ps[i] *= rt
return ps
class ContextTree:
def __init__(self):
self.counts = [0, 0, 0]
self.children = [None, None, None]
def path(self, history):
nodes = []
i = 0
end = min(len(history) - 1, 32)
while True:
nodes.append(self)
if i >= end:
break
x = history[i]
child = self.children[x]
if child is None:
child = ContextTree()
self.children[x] = child
nodes.append(child)
break
i += 1
self = child
return nodes
def update(path, c):
i = len(path) - 1
while i >= 0:
node = path[i]
b = node.counts[c] == 0
node.counts[c] += 1
if not b:
return
i -= 1
def predict(path):
counts = [0, 0, 0]
for node in path:
for i, n in enumerate(node.counts):
counts[i] += n
return counts
import collections
import random
import math
log = math.log
R, P, S = range(3)
index = {"R": R, "P": P, "S": S}
name = ("R", "P", "S")
beat = (P, S, R)
beaten = (S, R, P)
model = ContextTree()
blender = Blender(3)
history = collections.deque([])
output = random.choice(name)
ps = [1.0 / 3.0 for _ in xrange(3)]
else:
i = index[input]
blender.update((ps[(i + k) % 3] for k in xrange(3)))
j = index[output]
nodes = model.path(history)
history.appendleft(j)
history.appendleft(i)
update(nodes, i)
counts = [n + 1 for n in predict(nodes)]
t = sum(counts)
rt = 1.0 / t
ps = [n * rt for n in counts]
beta = t * t + 1.0
alpha = beta / 3.0
for i, n in enumerate(counts):
counts[i] = random.gammavariate(n + alpha, 1)
rt = 1.0 / sum(counts)
qs = [n * rt for n in counts]
qss = [[qs[(l + k) % 3] for l in xrange(3)] for k in xrange(3)]
rs = blender.predict(qss)
scores = [0, 0, 0]
for k, n in enumerate(rs):
scores[beat[k]] += n
scores[beaten[k]] -= n
output = name[scores.index(max(scores))]