Author | Sean |
Submission date | 2016-02-20 14:09:57.819404 |
Rating | 7149 |
Matches played | 409 |
Win rate | 69.93 |
Use rpsrunner.py to play unranked matches on your computer.
if input == "":
import array
import math
log = math.log
exp = math.exp
log_half = log(0.5)
log_third = log(1/3.0)
log_sixth = log(1/6.0)
log3 = log(3.0)
def log_add(x, y):
if y > x:
x, y = y, x
d = y - x
if d < -60:
return x
return x + log(1.0 + exp(d))
def laplace_smoothing(counts, i, x):
if i == 0:
used = 3
else:
used = 6
n = sum(counts)
return log(counts[x] + 1.0) - log(n + used)
def meta_index(counts, i, x):
n = counts[x]
if i == 0:
if x >= 3:
counts = counts[3:]
o = 3
else:
counts = counts[:3]
o = 0
else:
counts = counts
o = 0
if n == max(counts):
return o
if n == min(counts):
return o + 2
return o + 1
class ContextTree:
def __init__(self, n=6):
self.log_p_kt = 0.0
self.log_p_kt_meta = 0.0
self.log_p = 0.0
self.log_p_meta = 0.0
self.counts = array.array('i',(0 for _ in xrange(n)))
self.meta_counts = array.array('i',(0 for _ in xrange(n)))
self.total = 0
self.children = None
def update(self, history, i=0):
x = history[i]
if i and (x >= 3):
x -= 3
self.log_p_kt += laplace_smoothing(self.counts, i, x)
y = meta_index(self.counts, i, x)
self.log_p_kt_meta += laplace_smoothing(self.meta_counts, i, y)
self.counts[x] += 1
self.meta_counts[y] += 1
self.total += 1
if self.total == 1 or i >= len(history) - 1 or i >= 16:
self.log_p = self.log_p_kt
self.log_p_meta = self.log_p_kt_meta
return
if self.children is None:
self.children = [None for _ in xrange(len(self.counts))]
if self.children[x] is None:
self.children[x] = ContextTree(3)
self.children[x].update(history, i + 1)
log_p_children = 0
log_p_children_meta = 0
for child in self.children:
if child is not None:
log_p_children += child.log_p
log_p_children_meta += child.log_p_meta
self.log_p = log_add(self.log_p_kt, log_p_children) + log_half
self.log_p_meta = log_add(self.log_p_kt_meta,
log_p_children_meta) + log_half
def predict(self, history, i=0):
x = history[i]
if i and x >= 3:
x -= 3
log_p_kt = self.log_p_kt + laplace_smoothing(self.counts, i, x)
y = meta_index(self.counts, i, x)
log_p_kt_meta = self.log_p_kt_meta + laplace_smoothing(self.meta_counts, i, y)
if self.total == 0 or i >= len(history) - 1 or i >= 16:
return (log_p_kt, log_p_kt_meta)
log_p_children = 0
log_p_children_meta = 0
if self.children is not None:
for y, child in enumerate(self.children):
if child is not None:
if y == x:
(a, b) = child.predict(history, i + 1)
log_p_children += a
log_p_children_meta += b
else:
log_p_children += child.log_p
log_p_children_meta += child.log_p_meta
elif y == x:
if i == 0:
log_p_children += log_sixth
log_p_children_meta += log_sixth
else:
log_p_children += log_third
log_p_children_meta += log_third
return (log_add(log_p_kt, log_p_children) + log_half,
log_add(log_p_kt_meta, log_p_children_meta) + log_half)
import collections
import random
index = {"R": 0, "P": 1, "S": 2}
name = ("R", "P", "S")
beat = (1, 2, 0)
model = ContextTree()
history = collections.deque([])
output = random.choice(name)
else:
i = index[input]
j = index[output]
history.appendleft(i)
model.update(history)
history.appendleft(j)
model.update(history)
ps = [0.0, 0.0, 0.0]
uniform_iid_log_p = -(len(history) + 1) * log3
for i1, _ in enumerate(ps):
history.appendleft(i1)
(a, b) = model.predict(history)
a = log_add(a, b)
a = log_add(a, uniform_iid_log_p)
ps[i1] = a
history.popleft()
scores = [0, 0, 0]
t = ps[0]
t = log_add(t, ps[1])
t = log_add(t, ps[2])
for _ in xrange(3):
r = t + log(random.random())
for k, log_p in enumerate(ps):
if k == 0:
x = log_p
else:
x = log_add(x, log_p)
if r <= x:
break
a = beat[k]
b = beat[a]
scores[a] += 1
scores[b] -= 1
m = max(scores)
output = name[random.choice([k for k, x in enumerate(scores) if x == m])]