Author | aluizio_chris |
Submission date | 2016-12-28 19:06:53.724650 |
Rating | 6120 |
Matches played | 407 |
Win rate | 61.43 |
Use rpsrunner.py to play unranked matches on your computer.
import random
from random import randint
class RAM:
def __init__(self, addressSize, entrySize, addressing, decay=None, up=None):
self.addressing = addressing
self.decay = decay
self.up = up
self.ram = {}
self.address = [ randint(0, entrySize-1) for x in range(addressSize) ]
def _addressToIndex(self, entry):
binCode = []
for i in self.address:
binCode.append(entry[i])
return self.addressing(binCode)
def _acumulateRam(self, index):
if index not in self.ram:
self.ram[index] = 0
self.ram[index] += 1
def _getValue(self, index):
if index not in self.ram:
return 0
else:
return self.ram[index]
def train(self, entry, negative=False):
index = self._addressToIndex(entry)
if not negative:
if self.up is None:
self._acumulateRam(index)
else:
self.up(entry=entry, ram=self.ram, address=self.address, index=index)
else:
self.decay(entry=entry, ram=self.ram, address=self.address, index=index)
def classify(self, entry):
index = self._addressToIndex(entry)
return self._getValue(index)
class Discriminator:
def __init__(self, name, entrySize, addressSize, addressing, numberOfRAMS=None, decay=None, up=None):
if numberOfRAMS is None:
numberOfRAMS = int(entrySize/addressSize)
self.rams = [ RAM(addressSize, entrySize, addressing, decay=decay, up=up) for x in range(numberOfRAMS) ]
def train(self, entry, negative=False):
for ram in self.rams:
ram.train(entry, negative)
def classify(self, entry):
return [ ram.classify(entry) for ram in self.rams ]
class Addressing:
def __call__(self, binCode): # binCode is a list of values of selected points of entry
index = 0
for i,e in enumerate(binCode):
if e > 0:
index += e*pow(3,i)
return index
class WiSARD:
def __init__(self,
addressSize = 3,
numberOfRAMS = None,
bleachingActivated = True,
seed = random.randint(0, 1000000),
sizeOfEntry = None,
classes = [],
verbose = True,
addressing = Addressing(),
makeBleaching = None,
decay = None,
up = None):
self.seed = seed
self.decay = decay
self.up = up
random.seed(seed)
if addressSize < 3:
self.addressSize = 3
else:
self.addressSize = addressSize
self.numberOfRAMS = numberOfRAMS
self.discriminators = {}
self.bleachingActivated = bleachingActivated
self.addressing = addressing
if makeBleaching is None:
self.makeBleaching = self._makeBleaching
else:
self.makeBleaching = makeBleaching
if sizeOfEntry is not None:
for aclass in classes:
self.discriminators[aclass] = Discriminator(
aclass, sizeOfEntry, self.addressSize,
self.addressing, self.numberOfRAMS, decay=self.decay, up=self.up)
def _makeBleaching(self, discriminatorsoutput):
bleaching = 0
ambiguity = True
biggestVote = 2
while ambiguity and biggestVote > 1:
bleaching += 1
biggestVote = None
ambiguity = False
for key in discriminatorsoutput:
discriminator = discriminatorsoutput[key]
limit = lambda x: 1 if x >= bleaching else 0
discriminator[1] = sum(map(limit, discriminator[0]))
if biggestVote is None or discriminator[1] > biggestVote:
biggestVote = discriminator[1]
ambiguity = False
elif discriminator[1] == biggestVote:
ambiguity = True
if self.bleachingActivated:
break
return discriminatorsoutput
def train(self, entries, classes):
sizeOfEntry = len(entries[0])
for i,entry in enumerate(entries):
aclass = str(classes[i])
if aclass not in self.discriminators:
self.discriminators[aclass] = Discriminator(
aclass, sizeOfEntry, self.addressSize,
self.addressing, self.numberOfRAMS, decay=self.decay, up= self.up)
self.discriminators[aclass].train(entry)
if self.decay is not None:
for key in self.discriminators:
if key != aclass:
self.discriminators[key].train(entry, negative=True)
def classifyEntry(self, entry):
discriminatorsoutput = {}
for keyClass in self.discriminators:
discriminatorsoutput[keyClass] = [self.discriminators[keyClass].classify(entry),0]
discriminatorsoutput = self.makeBleaching(discriminatorsoutput)
calc = lambda key: (key, float(discriminatorsoutput[key][1])/len(discriminatorsoutput[key][0]))
classes = list(map(calc,discriminatorsoutput))
classes.sort(key=lambda x: x[1], reverse=True)
return classes
def classify(self, entries):
output=[]
for i,entry in enumerate(entries):
aclass = self.classifyEntry(entry)[0][0]
output.append((entry, aclass))
return output
class Decay:
def __call__(self, **kwargs):
if kwargs['index'] in kwargs['ram']:
value = kwargs['ram'][kwargs['index']]
kwargs['ram'][kwargs['index']] = 0.5*value - 0.1
class Up:
def __call__(self, **kwargs):
if kwargs['index'] not in kwargs['ram']:
kwargs['ram'][kwargs['index']] = 1
else:
value = kwargs['ram'][kwargs['index']]
kwargs['ram'][kwargs['index']] = 0.5*value + 1
class MakeBleaching:
def __call__(self, discriminatorsoutput):
for key in discriminatorsoutput:
ramsoutput = discriminatorsoutput[key][0]
discriminatorsoutput[key][1] = sum(ramsoutput)
return discriminatorsoutput
if input == "":
count = -1
history = []
prediction = {}
history_sizes = [15, 20, 30]
wisards = {}
wisard_hits = {}
min_random_turns = 100
final_random_turns = 100
for hs in history_sizes:
wisards[hs] = WiSARD(addressSize=5,sizeOfEntry=hs,verbose=False,decay=Decay(),up=Up())
wisard_hits[hs] = []
char2num = {"R":0, "P":1, "S":2}
num2char = {0:"R", 1:"P", 2:"S"}
defeated_by = {"R":"P", "P":"S", "S":"R"}
output = random.choice(["R","P","S"])
elif len(history) < history_sizes[0] or count < min_random_turns or count > 1000-final_random_turns:
output = random.choice(["R","P","S"])
history.append(char2num[input])
else:
# training
for hs in history_sizes:
if(len(history) < hs):
continue
hs_history = history[len(history)-hs:len(history)]
wisards[hs].train([hs_history], [char2num[input]])
# updating history
history.append(char2num[input])
prediction = {}
# classifying
for hs in history_sizes:
if(len(history) < hs):
continue
hs_history = history[len(history)-hs:len(history)]
result = wisards[hs].classifyEntry(hs_history)
max_value = 0.0
for r in result:
if(r[1] >= max_value):
prediction[hs] = int(r[0])
max_value = r[1]
if(hs in last_prediction):
wisard_hits[hs].append(1 if last_prediction[hs] == char2num[input] else 0)
# updating history
if(len(history) > history_sizes[len(history_sizes)-1]):
history.pop(0)
best_sum = 0
output = ''
# choosing the actual best wisard
for hs in history_sizes:
if(hs not in prediction or len(wisard_hits[hs]) == 0):
continue
if(sum(wisard_hits[hs])/len(wisard_hits[hs]) >= best_sum):
best_sum = sum(wisard_hits[hs])
output = defeated_by[num2char[prediction[hs]]]
if(count % 10 == 0 or output == ''):
output = random.choice(["R","P","S"])
last_prediction = prediction
count += 1