Author | Yang |
Submission date | 2016-11-12 09:28:24.897666 |
Rating | 6364 |
Matches played | 397 |
Win rate | 61.71 |
Use rpsrunner.py to play unranked matches on your computer.
import random
#input = ""
nwin = 0
ntie = 0
nloss = 0
iter = 0
epsilon = 0.3
#while True:
preLen = 8
if not input:
O = [random.choice('RPS') for i in range(preLen)]
A = [random.choice('RPS') for i in range(preLen)]
score = {
('R', 'R'): 0, ('R', 'P'): -1, ('R', 'S'): 1,
('P', 'R'): 1, ('P', 'P'): 0, ('P', 'S'): -1,
('S', 'R'): -1, ('S', 'P'): 1, ('S', 'S'): 0
}
Q = dict()
lr = 0.9
output = random.choice('RPS')
else:
input = input.upper()
#state = tuple(O[-preLen:] + A[-preLen:])
state = tuple(O[-preLen:])
action = output
# print "program gives: %s" % output
if score[(output, input)] == 1: nloss += 1
elif score[(output, input)] == 0: ntie += 1
elif score[(output, input)] == -1: nwin += 1
reward = score[(action, input)]
O.append(input)
A.append(output)
#newstate = tuple(O[-preLen:] + A[-preLen:])
newstate = tuple(O[-preLen:])
maxvalue = max(Q.get((newstate, a), 0) for a in 'RPS')
Q[(state, action)] = Q.get((state, action), 0) + lr * (reward + 0.5 * maxvalue - Q.get((state, action), 0))
succ = [Q.get((newstate, a), 0) for a in 'RPS']
optimal_actions = ['RPS'[x] for x in range(len(succ)) if succ[x] == max(succ)]
output = random.choice(optimal_actions) if random.random() > epsilon else random.choice('RPS')