Author | Sean |
Submission date | 2016-02-22 12:54:04.117081 |
Rating | 7399 |
Matches played | 416 |
Win rate | 70.91 |
Use rpsrunner.py to play unranked matches on your computer.
if input == "":
import collections
import math
import random
gamma = random.gammavariate
sqrt = math.sqrt
log = math.log
R, P, S = 0, 1, 2
third = 1.0 / 3
index = {"R": R, "P": P, "S": S}
beat = (P, S, R)
name = ("R", "P", "S")
def ucb(s, n, t):
return (s / n) + sqrt(2 * log(t) / n)
class MarkovTree:
def __init__(self, counts = None):
self.counts = [0.0 for _ in xrange(3)]
self.visits = [0.0 for _ in xrange(3)]
self.children = None
def score(self, t):
return ucb(self.pos_total, self.neg_total, self.total_visits, t)
def select_move(self, t):
r = gamma(self.counts[0] + third, 1)
p = gamma(self.counts[1] + third, 1)
s = gamma(self.counts[2] + third, 1)
scores = [s - p, r - s, p - r]
scores = [ucb(s, n + third, t) for s, n in zip(scores, self.visits)]
best = max(scores)
return (best, scores.index(best))
def update(self, h, i):
for n in h:
self.counts[i] += 1
if self.children is None:
break
self = self.children[n]
if self is None:
break
def predict(self, h):
path = []
stop = False
path.append(self)
for d, n in enumerate(h):
if stop or d >= 16:
break
if self.children is None:
self.children = [None for _ in xrange(3)]
if self.children[n] is None:
self.children[n] = MarkovTree()
stop = True
child = self.children[n]
self = child
path.append(self)
t = sum(1 + sum(node.visits) for node in path)
best_score = float("-inf")
for i, n in enumerate(path):
score, move = n.select_move(t)
if score >= best_score:
j = i
best_score = score
best_node = n
best_move = move
return (best_node, best_move)
tree = MarkovTree()
history = collections.deque([])
node = tree
else:
i = index[input]
j = index[output]
node.visits[j] += 1
tree.update(history, i)
history.appendleft(i)
history.appendleft(j)
node, k = tree.predict(history)
output = name[k]