Author | Sean |
Submission date | 2016-02-22 13:54:36.561864 |
Rating | 6895 |
Matches played | 398 |
Win rate | 70.35 |
Use rpsrunner.py to play unranked matches on your computer.
if input == "":
import collections
import math
import random
gamma = random.gammavariate
sqrt = math.sqrt
log = math.log
R, P, S = 0, 1, 2
index = {"R": R, "P": P, "S": S}
beat = (P, S, R)
name = ("R", "P", "S")
def ucb(s, n, t):
return (s / n) + sqrt(2 * log(t) / n)
class MarkovTree:
def __init__(self, counts = None):
self.counts = [0.0 for _ in xrange(3)]
self.children = None
def select_move(self, t):
r = gamma(self.counts[0] + 0.5, 1)
p = gamma(self.counts[1] + 0.5, 1)
s = gamma(self.counts[2] + 0.5, 1)
scores = [s - p, r - s, p - r]
n = r + p + s
scores = [ucb(s, n, t) for s in scores]
best = max(scores)
return (best, scores.index(best))
def update(self, h, i):
stop = False
for d, n in enumerate(h):
self.counts[i] += 1
if d >= 16 or stop:
return
if self.children is None:
self.children = [None for _ in xrange(3)]
if self.children[n] is None:
self.children[n] = MarkovTree()
stop = True
self = self.children[n]
def predict(self, h):
path = []
path.append(self)
for n in h:
if self.children is None:
break
self = self.children[n]
if self is None:
break
path.append(self)
t = sum(1.5 + sum(node.counts) for node in path)
best_score = float("-inf")
for n in path:
score, move = n.select_move(t)
if score >= best_score:
best_score = score
best_node = n
best_move = move
return (best_node, best_move)
tree = MarkovTree()
history = collections.deque([])
node = tree
else:
i = index[input]
j = index[output]
tree.update(history, i)
history.appendleft(i)
history.appendleft(j)
node, k = tree.predict(history)
output = name[k]