CopyModel_Test1

Authordavid.werecat
Submission date2018-08-02 20:54:51.621230
Rating6839
Matches played302
Win rate69.21

Use rpsrunner.py to play unranked matches on your computer.

Source code:

import random
class MatchModel:
	def __init__(self, order):
		self.order = order
		self.mask = 1 << (order << 1)
		self.ctx = 0
		self.hist = [3 for i in range(0, self.mask)]
		self.mask -= 1
	def predict(self):
		tmp = self.ctx
		for i in range(0, self.order):
			fnd = self.hist[tmp]
			if fnd != 3: return fnd
			tmp >>= 2
		return random.randint(0, 2)
	def update(self, val):
		tmp = self.ctx
		for i in range(0, self.order):
			self.hist[tmp] = val
			tmp >>= 2
	def next(self, val): self.ctx = (self.ctx << 2) + val + 1
	def done(self): self.ctx &= self.mask
	def upSgl(self, cval, hval):
		self.update(hval)
		self.next(cval)
		self.done()
	def upDbl(self, cv0, cv1, hval):
		self.update(hval)
		self.next(cv0)
		self.next(cv1)
		self.done()
class ModelPicker:
	def __init__(self, count, decay):
		self.count = count
		self.preds = [0 for i in range(0, count)]
		self.weigh = [0.0 for i in range(0, count)]
		self.decay = decay
	def setpred(self, idx, val): self.preds[idx] = val
	def setpreds(self, idx, vals):
		vl = len(vals)
		for vi in range(0, vl):
			self.preds[idx] = vals[vi]
			idx += 1
	def predict(self):
		idx = 0
		mxv = -10000.0
		tmv = 0
		for i in range(0, self.count):
			tmv = self.weigh[i]
			if tmv > mxv:
				mxv = tmv
				idx = i
		return self.preds[idx]
	def update(self, val):
		val *= 3
		for i in range(0, self.count):
			self.weigh[i] = (self.weigh[i] * self.decay) + VALUE[val + self.preds[i]]
if input == "":
	VALUE = [1,-1,0,0,1,-1,-1,0,1]
	WINS = [1,2,0]
	LOSS = [2,0,1]
	NVAL = {"R":0,"P":1,"S":2,"":0}
	CVAL = ["R", "P", "S"]
	cUU = MatchModel(8)
	cUT = MatchModel(8)
	cTU = MatchModel(8)
	cTT = MatchModel(8)
	cBU = MatchModel(8)
	cBT = MatchModel(8)
	sse = ModelPicker(28, 0.93)
	tval = random.randint(0, 2)
	uval = random.randint(0, 2)
else:
	tval = NVAL[input]
	cUU.upSgl(uval, uval)
	cUT.upSgl(uval, tval)
	cTU.upSgl(tval, uval)
	cTT.upSgl(tval, tval)
	cBU.upDbl(uval, tval, uval)
	cBT.upDbl(uval, tval, tval)
	sse.update(tval)
sse.preds[0] = cUU.predict()
sse.preds[1] = cUT.predict()
sse.preds[2] = cTU.predict()
sse.preds[3] = cTT.predict()
sse.preds[4] = cBU.predict()
sse.preds[5] = cBT.predict()
sse.preds[6] = tval
sse.preds[7] = uval
for i in range(0, 8):
    sse.preds[i + 8] = WINS[sse.preds[i]]
    sse.preds[i + 16] = WINS[sse.preds[i + 8]]
sse.setpreds(24, [0, 1, 2, random.randint(0, 2)])
uval = WINS[sse.predict()]
output = CVAL[uval]