Author | PiotrekG |
Submission date | 2018-08-24 07:58:59.581729 |
Rating | 5964 |
Matches played | 274 |
Win rate | 58.39 |
Use rpsrunner.py to play unranked matches on your computer.
from __future__ import division
import random
import bisect
beat = {'R': 'P', 'P': 'S', 'S': 'R'}
class Markov_model():
def __init__(self, matrix):
self.matrix = matrix
def update_matrix(self, olag2, ilag1, lim):
self.matrix[olag2][ilag1]['N'] = self.matrix[olag2][ilag1]['N'] + 1
sum_n = 0
for i in self.matrix[olag2]:
sum_n += self.matrix[olag2][i]['N']
for i in self.matrix[olag2]:
self.matrix[olag2][i]['Pr'] = self.matrix[olag2][i]['N'] / sum_n
for i in self.matrix[olag2]:
self.matrix[olag2][i]['N'] = self.matrix[olag2][i]['N'] * lim / sum_n
@staticmethod
def weighted_choice(choices):
values, weights = zip(*choices)
total = 0
cum_weights = []
for w in weights:
total += w
cum_weights.append(total)
x = random.random() * total
i = bisect.bisect(cum_weights, x)
return values[i]
def predict(self, olag1):
prs = []
for i in self.matrix[olag1]:
prs.append((i, self.matrix[olag1][i]['Pr']))
prediction = self.weighted_choice(prs)
return prediction
lim = 5
if input == '':
output = random.choice(list(beat.keys()))
olag1 = ''
olag2 = ''
ilag1 = ''
# fist level is my output lag(2) and second level is input lag(1)
matrix = {
'R': {'R': {'Pr': 1 / 3, 'N': lim / 3},
'P': {'Pr': 1 / 3, 'N': lim / 3},
'S': {'Pr': 1 / 3, 'N': lim / 3}},
'S': {'R': {'Pr': 1 / 3, 'N': lim / 3},
'P': {'Pr': 1 / 3, 'N': lim / 3},
'S': {'Pr': 1 / 3, 'N': lim / 3}},
'P': {'R': {'Pr': 1 / 3, 'N': lim / 3},
'P': {'Pr': 1 / 3, 'N': lim / 3},
'S': {'Pr': 1 / 3, 'N': lim / 3}}
}
model = Markov_model(matrix)
elif olag2 != '':
model.update_matrix(olag2, ilag1, lim)
predicted_input = model.predict(olag1)
output = beat[predicted_input]
else:
output = random.choice(list(beat.keys()))
olag2 = olag1
olag1 = output
ilag1 = input