Author | Sean |
Submission date | 2016-04-28 11:09:50.346570 |
Rating | 6495 |
Matches played | 408 |
Win rate | 65.2 |
Use rpsrunner.py to play unranked matches on your computer.
if input == "":
import collections
import random
class MarkovTree:
def __init__(self, counts = None):
self.counts = [0 for _ in xrange(3)]
self.children = None
def update_helper(self, h, i, p, d, skips):
stop = False
for j in xrange(p, len(h)):
self.counts[i] += 1
if stop or d >= 16:
return
d += 1
k = h[j]
if self.children is None:
self.children = [None for _ in xrange(4)]
self.children[3] = MarkovTree()
if self.children[k] is None:
self.children[k] = MarkovTree()
stop = True
if skips == 0:
self.children[3].update_helper(h, i, j + 1, d, skips + 1)
self = self.children[k]
def update(self, h, i):
self.update_helper(h, i, 0, 0, 0)
def predict_helper(self, h, p, n0):
for j in xrange(p, len(h)):
k = h[j]
for i, x in enumerate(self.counts):
n0[i] += x
if self.children is None:
return
self.children[3].predict_helper(h, j + 1, n0)
child = self.children[k]
if child is None:
return
self = child
def predict(self, h):
n0 = [0, 0, 0]
self.predict_helper(h, 0, n0)
return n0
R, P, S = 0, 1, 2
index = {"R": R, "P": P, "S": S}
name = ("R", "P", "S")
beat = (P, S, R)
beaten = (S, R, P)
tree = MarkovTree()
history = collections.deque([])
else:
i = index[input]
j = index[output]
tree.update(history, i)
history.appendleft(i)
history.appendleft(j)
counts = tree.predict(history)
r, p, s = [random.gammavariate(n + 6, 1) for n in counts]
scores = [s - p, r - s, p - r]
output = name[scores.index(max(scores))]