Author | Sean |
Submission date | 2016-05-05 11:51:25.016223 |
Rating | 7184 |
Matches played | 410 |
Win rate | 72.44 |
Use rpsrunner.py to play unranked matches on your computer.
if input == "":
import collections
import math
import random
gamma = random.gammavariate
sqrt = math.sqrt
log = math.log
R, P, S = 0, 1, 2
index = {"R": R, "P": P, "S": S}
beat = (P, S, R)
beaten = (S, R, P)
name = ("R", "P", "S")
def ucb(s, n, t):
return s + sqrt(2 * log(t) / n)
class MarkovTree:
def __init__(self, parent = None):
self.counts = [1.0 for _ in xrange(3)]
self.visits = [1.0 for _ in xrange(3)]
self.children = None
self.parent = parent
def select_move(self, t):
counts = self.counts
scores = [0, 0, 0]
for j in xrange(3):
n0 = gamma(counts[beaten[j]], 1)
n1 = gamma(counts[beat[j]], 1)
n2 = gamma(counts[j], 1)
s = (n0 - n1) / (n0 + n1 + n2)
scores[j] = ucb(s, self.visits[j], t)
best = max(scores)
return (best, scores.index(best))
def update(self, h, i):
for n in h:
self.counts[i] += 1
if self.children is None:
self.children = [None for _ in xrange(3)]
if self.children[n] is None:
self.children[n] = MarkovTree()
break;
self = self.children[n]
def predict(self, h):
t = sum(self.visits)
path = [self]
for d, n in enumerate(h):
if d >= 16:
break
if self.children is None:
break;
if self.children[n] is None:
break;
self = self.children[n]
t += sum(self.visits)
path.append(self)
best_score = 0
chosen = self
best_move = random.choice((R, P, S))
for node in path:
score, move = node.select_move(t)
if score >= best_score:
best_score = score
best_move = move
chosen = node
for node in path:
node.visits[best_move] += 1
return (chosen, best_move)
tree = MarkovTree()
history = collections.deque([])
else:
i = index[input]
j = index[output]
tree.update(history, i)
history.appendleft(i)
history.appendleft(j)
node, m = tree.predict(history)
output = name[m]