Author | momo |
Submission date | 2012-09-03 18:46:10.121999 |
Rating | 7332 |
Matches played | 790 |
Win rate | 76.33 |
Use rpsrunner.py to play unranked matches on your computer.
import random, math
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def lowest(v):
return random.choice([i for i in range(len(v)) if min(v) == v[i]])
def best(c):
return highest([c[1]-c[2], c[2]-c[0], c[0]-c[1]])
if(1):
if (input == ""):
N = 1
AR1 = 0.86
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
table = {}
cutoff = 400
last1 = 1
hennies = 5
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
r=0
MEM2 = [3,4]
M = len(MEM2)*2 + 1
ALL = M*3
if(last1 == 1):
M = len(MEM2)*2
ALL = M*3+1
models = [0.3,0.9,0.6,0.4,0.3,1]*(len(MEM2))+ [1]
state = [0] * (ALL)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
hit = [tu]
prognosis = [random.choice(st) for i in range(ALL)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
hit += [tu]
state = [ AR1 * state[i] + res[prognosis[i]][tu] * models[i] for i in range(ALL)]
r = res[yo][tu]
prognosis = [random.choice(st) for j in range(ALL)]
prop = [random.choice(st) for j in range(len(MEM2)*2)]
i = 0
#are our last moves repeating history? if yes, pick a random occurence - but prefer newer matches.
for m in MEM2:
if(N + 1> m):
key = tuple(hi[-m-1:-1])
if (key in table):
table[key] += [pa]
else:
table[key] = [pa]
if(N > m):
key = tuple(hi[-m:])
if (key in table):
ch = table[key]
k = len(ch)
k = max(random.choice(range(0,k)),random.choice(range(0,k)))
prop[i] = ch[k][0]
prop[i+1] = ch[k][1]
i += 2
#fallback: this is the predictor used in reflex, an improvement over a couple of hennies, (henny from see http://webdocs.cs.ualberta.ca/~darse/rsbpc.html
p = [0,0,0]
p[hit[random.randint(0, N-1)]] += 1
for k in [300,100]:
if N > k: p[hit[random.randint(N-k-1, N-1)]] += 1
j = random.randint(0, N-1)
p[(3 + tu + hit[j]- hit[j-1])%3] += 1
if N > 5:
j = random.randint(5, N-1)
p[(3+ hit[N-4] + hit[j]- hit[j-5])%3] += 1
if N > 5:
j = random.randint(5, N-1)
p[(16+ sum(hit[N-5:N]) - sum(hit[j-5:j]))%3] += 1
i = -3
for m in range(len(MEM2)):
i += 3; prognosis[i] = (prop[2*m])
i += 3; prognosis[i] = (prop[2*m+1])
i += 3; prognosis[i] = best(p)
i += 3
if (last1 == 1):
i -= 2
assert(i==ALL)
for j in range(M):
prognosis[j*3 + 1] = (prognosis[j*3] + 1) % 3
prognosis[j*3 + 2] = (prognosis[j*3+1] + 1) % 3
best = highest(state)
yo = prognosis[best]
output = states[yo]
N = N + 1