Author | vmonaco |
Submission date | 2012-10-05 21:05:55.918641 |
Rating | 6324 |
Matches played | 812 |
Win rate | 63.79 |
Use rpsrunner.py to play unranked matches on your computer.
'''
Created on Oct 5, 2012
@author: vinnie
For more information and details about the ELPH sequence predictor, see:
http://vmonaco.com/2012/10/03/dynamic-sequence-prediction-using-entropy-as-a-learning-utility/
The original paper can be found at:
gandalf.psych.umn.edu/users/schrater/Papers/p67-jensen.pdf
'''
import random
from math import log
from itertools import chain
from operator import itemgetter
def xuniqueCombinations(items, n):
if n==0: yield ()
else:
for i in xrange(len(items)):
for cc in xuniqueCombinations(items[i+1:],n-1):
yield (items[i],)+cc
def powersetNoEmpty(iterable):
'''
powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)
'''
s = list(iterable)
return chain(*[xuniqueCombinations(s, r) for r in range(1, len(s)+1)])
def reliableEntropy(pspace):
'''
Entropy with an additional false positive to remove the bias towards low
frequency hypothesis
Returns the reliable entropy
'''
total_frequency = sum(pspace.values()) + 1.0
h_rel = -((1.0/total_frequency) * log(1.0/total_frequency, 2))
for frequency in pspace.itervalues():
tmp = frequency/total_frequency
h_rel -= tmp * log(tmp, 2)
return h_rel
def prune(hspace, h_thresh=1.00):
'''
Prune the hypothesis space using the entropy as a threshold
Returns a pruned hypothesis space
'''
for key in hspace.keys():
if reliableEntropy((key, hspace[key])) > h_thresh:
hspace.pop(key)
return hspace
def predict(hspace, stm):
'''
Given a short term memory and hypothesis space, make a prediction.
Returns the prediction, STM item used to make the prediction, and entropy
'''
stm_matches = [hspace[p] for p in powersetNoEmpty(stm) if hspace.has_key(p)]
if len(stm_matches) == 0:
return None, float('inf')
lowest_entropy = min(stm_matches, key=reliableEntropy)
h = reliableEntropy(lowest_entropy)
prediction = max(lowest_entropy.items(), key=itemgetter(1))
return prediction[0], h
def observe(hspace, stm, observation):
'''
Observe and learn a new symbol following the STM.
Returns the updated hypothesis space.
'''
hspace_keys = powersetNoEmpty(stm)
for key in hspace_keys:
pspace = hspace.setdefault(key, {})
pspace.setdefault(observation, 0)
pspace[observation] += 1
return hspace
def observeSequence(hspace, sequence, stm_size=7):
'''
Observe an entire sequence (not online), and return the hypothesis space.
'''
hits = 0
for i in xrange(stm_size, len(sequence)):
stm = sequence[i-stm_size:i]
prediction, h = predict(hspace, stm)
observe(hspace, stm, sequence[i])
prune(hspace, 1.0)
if sequence[i] == prediction:
print "HIT"
hits += 1
else:
print "MISS"
print "Correct: ", float(hits)/(len(sequence)-stm_size)
return hspace
class OnlineELPH:
def __init__(self, stm_size=7, entropy_thresh=1.0):
"""
Create on online ELPH sequence predictor
Really just a wrapper and state holder for the pure functions above
"""
self.hspace = {}
self.stm = []
self.stm_size = stm_size
self.entropy_thresh = entropy_thresh
return
def observe(self, next_mem, observation):
"""
Observe a symbol.
Also updates the STM and prunes the hypothesis space
"""
observe(self.hspace, self.stm, observation)
self.stm.append(next_mem)
if len(self.stm) > self.stm_size:
self.stm = self.stm[-self.stm_size:]
return
def predict(self):
"""
Make a prediction
"""
return predict(self.hspace, self.stm)
if input == '':
beat = {'R': 'P', 'P': 'S', 'S': 'R'}
output = random.choice(['R','P','S'])
elph = OnlineELPH(stm_size=4, entropy_thresh=1.5)
feedback_elph = OnlineELPH(stm_size=3, entropy_thresh=1.5)
else:
elph.observe(input, input)
p1, h1 = elph.predict()
p2, h2 = feedback_elph.predict()
if h1 < h2:
prediction = p1
else:
prediction = p2
if prediction and random.random() > 0.7:
output = beat[prediction]
else:
output = output = random.choice(['R','P','S'])
feedback_elph.observe(output, input)