Author | evolvingstuff |
Submission date | 2011-06-11 07:38:41.577344 |
Rating | 5253 |
Matches played | 5506 |
Win rate | 51.73 |
Use rpsrunner.py to play unranked matches on your computer.
import random, math
def strategy(window, decay):
longest = 0
prediction = [1.0]*3
for t in range(window, len(history)-1):
if history[t-window:t] == history[-window:]:
prediction_index = c_to_n[n_to_cc[history[t]][1]]
prediction = [x * decay for x in prediction]
prediction[prediction_index] += 1.0
prediction = [x/sum(prediction) for x in prediction]
for k in prediction:
if k == 0:
raise Exception('expected non-zero entries')
return prediction
if input == "":
history = []
time_steps_random = 10
cc_to_n = {'RR':0, 'RP':1, 'RS':2, 'PR':3, 'PP':4, 'PS':5, 'SR':6, 'SP':7, 'SS':8}
n_to_cc = {0:'RR', 1:'RP', 2:'RS', 3:'PR', 4:'PP', 5:'PS', 6:'SR', 7:'SP', 8:'SS'}
c_to_n = {'R':0, 'P':1, 'S':2}
n_to_c = {0:'R', 1:'P', 2:'S'}
counter_n_to_c = {0:'P', 1:'S', 2:'R'}
n_to_score = {0:0, 1:-1, 2:1, 3:1, 4:0, 5:-1, 6:-1, 7:1, 8:0}
T = 2
strategy_weights = [1]*T
prediction = [[1]*3 for T in range(T)]
strategy_decay = 0.7
match_decay = 0.5
output = random.choice(['R','P','S'])
else:
history.append(cc_to_n[output+input])
if len(history) >= time_steps_random:
for t in range(0, T):
strategy_weights[t] *= strategy_decay
strategy_weights[t] += prediction[t][c_to_n[input]]
prediction[t] = strategy(t+1, match_decay)
chosen_predictor = prediction[strategy_weights.index(max(strategy_weights))]
chosen_predictor = [x*x for x in chosen_predictor]
tot = sum(chosen_predictor)
for i in range(3):
if random.random() < chosen_predictor[i] / tot:
output = counter_n_to_c[i]
break
tot -= chosen_predictor[i]
else:
output = random.choice(['R','P','S'])