This program has been disqualified.
Author | Sean |
Submission date | 2016-02-09 01:33:53.738542 |
Rating | 5000 |
Matches played | 0 |
Win rate | 0 |
import random
class MarkovChain:
def __init__(self, counts = None):
self.visits = 0
if counts is None:
self.counts = [1, 1, 1]
else:
self.counts = counts
self.children = [self, self, self]
def split_edge(self, i):
old = self.children[i]
new = MarkovChain(old.counts)
self.children[i] = new
for i in xrange(3):
new.children[i] = old.children[i]
def unnormalized_probabilities(self):
return [x + 1 for x in self.counts]
def transition(self, i):
self.visits += 1
self.counts[i] += 2
if self.counts[i] >= 128:
for i in xrange(3):
self.counts[i] = self.counts[i] / 2 + 1
if self.children[i].visits >= 2:
self.split_edge(i)
return self.children[i]
index = {"R": 0,
"P": 1,
"S": 2}
beat = {0: "P",
1: "S",
2: "R"}
if input == "":
model = MarkovChain()
else:
i = index[input]
j = index[output]
model = model.transition(i)
model = model.transition(j)
probs = model.unnormalized_probabilities()
t = sum(probs)
print([x / float(t) for x in probs])
r = random.randint(0, t)
x = 0
for i, p in enumerate(probs):
x += p
if r < x:
output = beat[i]
break