Author | Sean |
Submission date | 2016-02-21 12:02:14.726561 |
Rating | 4305 |
Matches played | 396 |
Win rate | 43.43 |
Use rpsrunner.py to play unranked matches on your computer.
if input == "":
import array
import math
import random
log = math.log
exp = math.exp
gamma = random.gammavariate
log_half = log(0.5)
log_third = log(1/3.0)
log_sixth = log(1/6.0)
log3 = log(3.0)
def log_add(x, y):
if y > x:
x, y = y, x
d = y - x
if d < -60:
return x
return x + log(1.0 + exp(d))
def laplace_smoothing(counts, i, x):
if i == 0:
used = 6
else:
used = 3
n = sum(counts)
return log(gamma(counts[x] + 1, 1)) - log(n + used)
class ContextTree:
def __init__(self, n=6):
self.log_p_kt = 0.0
self.log_p = 0.0
self.counts = array.array('i',(0 for _ in xrange(n)))
self.total = 0
self.children = None
def update(self, history, i=0):
x = history[i]
if i and (x >= 3):
x -= 3
self.log_p_kt += laplace_smoothing(self.counts, i, x)
self.total += 1
self.counts[x] += 1
if self.total == 1 or i >= len(history) - 1 or i >= 16:
self.log_p = self.log_p_kt
return
if self.children is None:
self.children = [None for _ in xrange(len(self.counts))]
if self.children[x] is None:
self.children[x] = ContextTree(3)
self.children[x].update(history, i + 1)
log_p_children = 0
for child in self.children:
if child is not None:
log_p_children += child.log_p
self.log_p = log_add(self.log_p_kt, log_p_children) + log_half
def predict(self, history, i=0):
x = history[i]
if i and (x >= 3):
x -= 3
log_p_kt = self.log_p_kt + laplace_smoothing(self.counts, i, x)
if self.total == 0 or i >= len(history) - 1 or i >= 16:
return log_p_kt
log_p_children = 0
if self.children is not None:
for y, child in enumerate(self.children):
if child is not None:
if y == x:
log_p_children += child.predict(history, i + 1)
else:
log_p_children += child.log_p
elif y == x:
if i == 0:
log_p_children += log_sixth
else:
log_p_children += log_third
return log_add(log_p_kt, log_p_children) + log_half
import collections
index = {"R": 0, "P": 1, "S": 2}
name = ("R", "P", "S")
beat = (1, 2, 0)
model = ContextTree()
history = collections.deque([])
output = random.choice(name)
else:
i = index[input]
j = index[output]
history.appendleft(i)
model.update(history)
history.appendleft(j + 3)
model.update(history)
ps = [0.0, 0.0, 0.0]
for i1, _ in enumerate(ps):
history.appendleft(i1)
ps[i1] = model.predict(history)
history.popleft()
[r, p, s] = ps
scores = [s - p, r - s, p - r]
output = name[scores.index(max(scores))]