This program has been disqualified.
Author | Sean |
Submission date | 2016-05-04 10:27:45.835150 |
Rating | 6305 |
Matches played | 63 |
Win rate | 65.08 |
if input == "":
import collections
import math
import random
gamma = random.gammavariate
R, P, S = 0, 1, 2
index = {"R": R, "P": P, "S": S}
beat = (P, S, R)
name = ("R", "P", "S")
def score(probs):
r, p, s = probs
scores = [s - p, r - s, p - r]
s = max(scores)
return (s, scores.index(s))
def score_belief(counts):
r, p, s = counts
r0 = s - p
p0 = r - s
s0 = p - r
r1, p1, s1 = 0, 0, 0
for _ in xrange(3):
r1 = max(r1, gamma(s + 1, 1) - gamma(p + 1, 1))
if r1 >= r:
break
for _ in xrange(3):
p1 = max(p1, gamma(r + 1, 1) - gamma(s + 1, 1))
if p1 >= p:
break
for _ in xrange(3):
s1 = max(s1, gamma(p + 1, 1) - gamma(r + 1, 1))
if s1 >= s:
break
scores = [r1, p1, s1]
s = max(scores)
return (s, scores.index(s))
class MarkovTree:
def __init__(self):
self.counts = [0.0 for _ in xrange(3)]
self.children = None
def select_move(self):
(s0, _) = score(self.counts)
while True:
(s1, _) = u = score_belief(self.counts)
if s1 >= s0:
return u
def update(self, h, i):
for d, n in enumerate(h):
if d >= 8:
return
self.counts[i] += 1
if self.children is None:
self.children = [MarkovTree() for _ in xrange(3)]
return
self = self.children[n]
def predict(self, h):
s0 = 0
for n in h:
s1, m1 = self.select_move()
if s1 >= s0:
m = m1
s0 = s1
if self.children is None:
return m
self = self.children[n]
tree = MarkovTree()
history = collections.deque([])
output = random.choice(name)
else:
i = index[input]
j = index[output]
tree.update(history, i)
history.appendleft(i)
history.appendleft(j)
output = name[tree.predict(history)]