This program has been disqualified.
Author | chuck |
Submission date | 2011-06-10 12:37:10.739036 |
Rating | 5614 |
Matches played | 1770 |
Win rate | 56.5 |
from collections import defaultdict
from heapq import nlargest
from operator import itemgetter
import random
class Counter(dict):
def __init__(self, iterable=[], **kwds):
self.update(iterable, **kwds)
def __missing__(self, key):
return 0
def most_common(self, n=None):
if n is None:
return sorted(self.iteritems(), key=itemgetter(1), reverse=True)
return nlargest(n, self.iteritems(), key=itemgetter(1))
def update(self, iterable=None, **kwds):
if iterable is not None:
if hasattr(iterable, 'iteritems'):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
dict.update(self, iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds)
def __add__(self, other):
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem in set(self) | set(other):
newcount = self[elem] + other[elem]
if newcount > 0:
result[elem] = newcount
return result
def __mul__(self, other):
if not isinstance(other, int):
return NotImplemented
result = Counter()
for elem in self:
newcount = self[elem]*other
if newcount > 0:
result[elem] = newcount
return result
def buildMC(history, op_history, order):
prev = tuple(history[-order:])
n = len(history)
hist = Counter()
for i in xrange(order, n-1):
tup = tuple(history[i-order:i])
if tup == prev:
hist.update((op_history[i],))
normHist(hist)
return hist
def normHist(hist):
n = float(sum(hist.itervalues()))
if n > 0:
for key, val in hist.iteritems():
hist[key] = val/n
if input == '':
history = []
op_history = []
hist_maxlen = 300
order = 4
order_weights = [1]*(order+1)
predictions = [None]*(order+1)
else:
op_history.append(input)
for i in xrange(1, order+1):
if predictions[i] == input:
order_weights[i] += 1
if len(history) > hist_maxlen:
remove = hist_maxlen-len(history)
history = history[remove:]
op_history = op_history[remove:]
if len(history) >= 100:
cnt = Counter()
for i in xrange(1, order+1):
hist = buildMC(history, op_history, i)
pred = hist.most_common(1)
if len(pred) == 0:
predictions[i] = None
else:
predictions[i] = pred[0][0]
cnt += hist*order_weights[i]
most_frequent = cnt.most_common(1)
if len(most_frequent) == 0:
output = random.choice(["R","P","S"])
else:
reaction, freq = most_frequent[0]
beat = {'R': 'P', 'P': 'S', 'S': 'R'}
output = beat[reaction]
else:
output = random.choice(["R","P","S"])
history.append(output)